This project aims to introduce AI-driven resources and assessments to enhance the teaching and learning experiences for students and curriculum planners. The AI-enabled 'study companion' tool offers targeted assistance to students, like setting objectives to secure top grades in a course and generating suggestions to meet those objectives. The AI-integrated 'companion analytics' tool equips curriculum planners with dashboards and assists them in the process of (re)structuring study programs.

Process Mining over SAP Data (PM-SAP)

The initial and most costly phase in process mining involves retrieving, converting, and uploading event logs from information systems. Specifically, pulling event data from prevalent ERP platforms like SAP is a significant hurdle due to the data's magnitude and organization. The purpose of this project is to first obtain object-focused event data from SAP ERP platforms, and then uncover and examine both familiar and unfamiliar processes within these systems.

Root cause analysis of bottlenecks in FAB, *in cooperation with Samsung Electronics*

Development of algorithm for recommending best resource path using AI, *in cooperation with Samsung Electronics*

Development of best reference resource mining algorithm, *in cooperation with Samsung Electronics*

The importance of efficiently operating and managing manufacturing equipment in a process is highlighted in this research. By utilizing process mining techniques, analysis of equipment status and operation status becomes possible. The research aims to develop an equipment mining algorithm for deriving the Best Reference equipment. The study involves analyzing core semiconductor manufacturing processes, identifying problem equipment, engaging in process mining technology sensing activities that include technology and case introductions, and developing a methodology for identifying the Best Reference equipment using process mining techniques.