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Abstract

This paper presents a novel approach for generating actionable recommenda-
tions from educational event data collected by Campus Management Systems
(CMS) to enhance study planning in higher education. The approach unfolds in
three phases: feature identification tailored to the educational context, predictive
modeling employing the RuleFit algorithm, and extracting actionable recommen-
dations. We utilize diverse features, encompassing academic histories and course
sequences, to capture the multi-dimensional nature of student academic behav-
iors. The effectiveness of our approach is empirically validated using data from
the computer science bachelor’s program at RWTH Aachen University, with the
goal of predicting overall GPA and formulating recommendations to enhance
academic performance. Our contributions lie in the novel adaptation of behav-
ioral features for the educational domain and the strategic use of the RuleFit
algorithm for both predictive modeling and the generation of practical recom-
mendations, offering a data-driven foundation for informed study planning and
academic decision-making.

Keywords: Educational Recommendations, Study Planning, Educational Event Data,
Higher Education, Rule-based Modeling, Recommender Systems
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1 Introduction

In higher education, the design of study programs is a complex task that involves the
careful consideration of examination regulations, degree requirements, grading crite-
ria, thesis guidelines, and course cancellation policies [1]. These elements serve as the
foundation for guiding students through their academic journey and ensuring that the
curriculum meets educational standards and student needs. For example, the examina-
tion regulation for the 2018 RWTH bachelor’s program in computer science mandates
that students must accumulate at least 120 credit points to register for their thesis,
while the course handbook outlines prerequisites for course enrollment, like complet-
ing “Introduction to Computer Engineering” course before advancing to “Practical
System Programming” course. These structured requirements assist students in tai-
loring their course selections to their interests and academic objectives and ensuring
that courses are not taken too early.

The development of effective study programs includes creating recommended study
plans [2]. These plans suggest a sequence for completing courses that help students
graduate on time. This underscores the importance of providing study program design-
ers with the knowledge and tools needed to create curricula that are both academically
sound and flexible enough to accommodate various student needs.

One approach to assist program designers for creating study plans is to analyze
historical data on student study paths [3–7]. This analysis can identify patterns asso-
ciated with successful academic outcomes, offering a data-driven basis for curriculum
development. By using these insights on what has helped students succeed in the past,
program designers can create study plans that include recommended course selection
and sequencing.

However, existing work mainly analyzes how individual courses or grades affect
academic performance, but often misses the sequence and interaction between courses.
To fill this gap, the authors in [8] investigate students’ course trajectories, con-
sidering the sequence between courses, for better course sequencing guidance. The
proposed method uses various features based on course sequencing such as directly-
follows relations between courses and employ decision trees to derive course sequences
that contribute to better academic performance. However, the method only considers
control-flow-centric features about course sequencing, limiting its ability to offer holis-
tic recommendations from different perspectives. Moreover, the proposed approach
inherits issues of decision trees such as overfitting and outlier sensitivity, providing
less practical recommendations.

In this work, we extend the approach suggested in [8] by systematically identifying
behavioral features that mirror educational processes. To address decision tree draw-
backs, we apply the RuleFit algorithm, ensuring the interpretability vital for creating
effective recommendations. More in detail, we introduce an approach for deriving such
recommendations from educational event data sourced from Campus Management
Systems (CMS). Our approach involves three phases for learning recommendations
from educational event data:

• First, we identify behavioral features that encapsulate students’ academic histo-
ries, such as previous grades, course sequences, and exam attempt frequencies. To
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achieve this, we explore a wide array of features suggested, specifically leveraging
the extensive list proposed by de Leoni et al. [9]. We then tailor these features to the
educational domain, ensuring they are relevant and reflective of students’ academic
journey.

• After extracting these features from the event data captured by CMS, we train a
predictive model using the RuleFit algorithm [10]. This model is designed to forecast
educational outcomes such as overall GPA, time-to-degree, and the likelihood of
dropout, providing a statistical foundation for recommendation generation.

• Finally, with the predictive model, we extract actionable rules distilled from
the model’s outputs and transform these rules into recommendations for course
designers.

We evaluate the effectiveness of our proposed method through an empirical eval-
uation using educational event data from the computer science bachelor’s program at
RWTH Aachen University. We first extract relevant features for 3,190 students within
the program. Next, we develop a predictive model specifically designed to forecast stu-
dents’ GPA using the features. Finally, we extract rules statistically associated with
achieving the goal from the predictive model and derive recommendations for the
computer science bachelor’s program by analyzing these rules.

The remainder of this paper is structured as follows. Section 2 reviews related
literature, and Section 3 introduces the preliminaries necessary for understanding
the context and foundation of our work. Our main contributions are elaborated in
Section 4, detailing our proposed approach. Next, we describe the dataset employed
in our evaluation in Section 5. Afterward, Section 6 presents a comprehensive evalua-
tion of our approach, including the results and their interpretation. Finally, Section 7
concludes the paper.

2 Related Work

Student success is essential for higher education institutions, serving as a key metric
for evaluating their quality. York et al. [11] define student success, emphasizing seven
core elements: academic achievement, satisfaction, skills, and competencies acquisi-
tion, persistence, learning objectives attainment, and career success. Many studies
predominantly equate student success with academic achievement, measured by Grade
Point Average (GPA), time-to-degree, and dropout [12].

Identifying the factors that influence student success necessitates gathering and
analyzing relevant data. This includes historical academic performance, such as high
school performance and pre-admission scores, alongside university data like GPA and
specific course grades [13]. Student demographics also play a role, encompassing gen-
der, age, ethnicity, and socioeconomic background [14]. Moreover, psychological factors
like interest, study habits, stress levels, and motivation can impact outcomes [15].
Lastly, student E-Learning activity metrics, such as login frequency, task completion,
test participation, forum contributions, and engagement with educational content, are
critical for a comprehensive understanding [16].

A variety of methods have been introduced to provide recommendations to stu-
dents or course designers by correlating the aforementioned factors with academic
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achievement. These approaches leverage data and process mining techniques [17–19].
A significant emphasis is placed on E-Learning activities. For instance, sequential pat-
tern mining has been employed to customize recommendations on learning materials
according to students’ learning styles and web-usage habits [20]. Association rule min-
ing has been utilized to suggest online learning activities on educational websites [21],
and for personalizing content recommendations by analyzing web browsing events with
educational context [22]. Furthermore, clustering techniques have been applied to de-
velop a model for recommending resources to students in analogous situations [23],
and to personalize E-Learning by organizing web documents using clustering methods
based on maximal frequent item sets [24].

Focusing on methods that correlate historical academic performance with aca-
demic success, various techniques have been employed to predict and enhance student
outcomes. Decision trees and genetic algorithms have been used to identify student
dropout risks, revealing that lower GPAs and extended enrollment are key indica-
tors [3]. Similarly, random forest methods have identified significant factors affecting
dropout rates, utilizing a dataset of informatics engineering students to assess the im-
pact of historical academic features [4]. Predictive models employing support vector
machines and k-nearest neighbor algorithms have been developed in [5] to forecast
final exam grades, with a focus on midterm grades and academic departments as
predictors. Early assessment activities have been used to identify students at risk in
introductory courses, applying random forest techniques for timely interventions [6].
Furthermore, Alangari and Alturki [7] explored GPA predictions, identifying specific
courses as significant academic performance influencers.

The existing work on providing recommendations based on historical academic
performance primarily examine the influence of individual courses or grades on aca-
demic achievement, with limitations in addressing the sequence and interaction of
courses. To overcome this, the authors in [8] investigate students’ study paths across
multiple courses, considering the effects of retaking courses to aid students in course
selection. However, this approach, with its reliance on ad-hoc, control-flow-focused fea-
tures, falls short of generating comprehensive recommendations. Furthermore, using
decision trees, prone to overfitting and sensitivity to outliers, raises concerns about
robustness. This work enhances this approach by systematically developing actionable
behavioral features that represent educational processes. We also mitigate decision tree
limitations by employing the RuleFit algorithm, ensuring interpretability essential for
generating effective recommendations.

3 Preliminaries

This section outlines the foundational concepts of our approach. We start with an
overview of educational event data, which form the basis of our analysis. Following this,
we introduce the RuleFit algorithm, a key method for developing predictive models
from which we derive recommendations.
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3.1 Educational Event Log

Table 1 illustrates a fragment of an educational event log, presented in a tabular
format, which serves as an input for our approach. Each row within the table represents
a discrete event. An event denotes the activity of a student taking a course in their
study program. Events in the log are characterized by a set of attributes. In this paper,
we focus on six attributes for each event:

• Student ID : A unique identifier for each student.
• Course ID : The identifier of the course.
• Semester : The academic term during which the course was taken, indicating the
temporal aspect of the student’s academic journey.

• Exam Date: The date when the course exam was taken.
• Credits: The credit value of the course.
• Grade: The grade achieved by the student in the course.

Student ID Course ID Semester Exam Date Credits Grade

S001 C101 Fall 2023 15.Dec.2023 4 2.0
S001 C102 Spring 2024 18.Jun.2024 3 1.5
S001 C101 Fall 2024 15.Dec.2024 4 1.7
S001 C104 Fall 2024 19.Dec.2024 3 1.3
S002 C101 Fall 2023 15.Dec.2023 4 1.0
S002 C103 Spring 2024 15.Jun.2024 3 2.3
S003 C102 Fall 2023 15.Dec.2023 3 2.7
S003 C101 Spring 2024 18.Jun.2024 4 2.0

Table 1: Example of educational event data

For instance, the first row indicates that student S001 took the course C101 in the
Fall 2023 semester, for which the student earned 4 credits and received a grade of 2.0.
For the remainder of the paper, we assume that 1.0 is the highest (best) grade and
5.0 is the lowest (worst) grade. Students with a grade of 4.0 or better pass the exam.

3.2 The RuleFit Algorithm

The RuleFit algorithm is a machine learning technique that synergizes the rule-based
decision-making power of decision trees with the predictive accuracy and interpretabil-
ity of linear models. Unlike traditional decision tree models, which often struggle with
overfitting and limited interpretability due to complex tree structures, RuleFit sim-
plifies the decision process and enhances model understandability without sacrificing
performance [10]. The algorithm operates in three phases: rule generation, rule fitting,
and feature importance.

3.2.1 Rule Generation

In the first phase, the algorithm creates decision rules from an ensemble of trees,
which are constructed using gradient boosting [25]. Each rule is a conditional state-
ment that mirrors a path from the root node to a leaf node within these trees. For
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example, take features such as the course grade (lgrade course-name) and the number of
course enrollments (lnum course-name). A rule that might be generated (r1) could be: IF
lgrade C101 < 1.3 AND lnum C101 < 2 THEN predict the overall GPA of 1.5. This rule
suggests that achieving a high grade for C101 with a single attempt is associated with
higher academic achievement, which is represented by the predicted overall GPA.

3.2.2 Sparse Linear Model with a Running Educational Example

After generating a set of rules, RuleFit constructs a sparse linear model that includes
both these rules and the original features from the dataset. For our educational ex-
ample, this means integrating features like lgrade C101 and lnum C101 with rules based
on them like r1.

In the RuleFit algorithm, the sparse linear model is represented as follows:

f̂(x) = β̂0 +

K∑
k=1

α̂krk(x) +

p∑
j=1

β̂j lj(xj),

where:

• f̂(x): The predicted outcome based on the model, such as a student’s overall GPA.
• β̂0: The intercept of the model.
• K: The total number of rules generated from decision trees.
• α̂k: The weight assigned to the k-th rule.
• rk(x): The k-th rule applied to the input data x.
• p: The number of original features in the dataset.
• β̂j : The weight assigned to the j-th original feature.
• lj(xj): The j-th original feature in the input data x.

Lasso regularization [26] is applied to prune less informative rules and features,
focusing the model on those most predictive of the outcome.

3.2.3 Determining Feature Importance

The final phase quantifies the importance of each feature and rule. For determining
feature importance, the importance measure for original features is defined as:

Ij = |β̂j | · std(lj(xj)),

and for rules as:

Ik = |α̂k| ·
√

sk(1− sk),

where:

• std(lj(xj)): The standard deviation of the j-th original feature across the dataset,
reflecting its variability.

• sk: The support of the k-th rule, representing the proportion of data instances where
the rule is applicable.

These measures help identify which features and rules are most strongly associated
with the outcome.
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4 Approach to Learning Recommendations

Figure 1 provides an overview of our approach to learning actionable study planning
recommendations from educational event data extracted from CMS. First, we define
objectives for our recommendations, such as improving overall GPA and optimizing
course completion metrics. Next, we embark on feature engineering, where we apply
established frameworks to define a comprehensive set of behavioral features that cap-
ture students’ academic behaviors and experiences. With our features in place, we
transition to the model construction phase, where the RuleFit algorithm is employed
to train an ensemble of decision trees on the engineered features. Using the constructed
model, we generated recommendations by assessing the importance and impact of the
rules that constitute the model and prioritizing those with a higher influence on aca-
demic success. Subsequently, we interpret these recommendations to ensure they are
actionable, aligning them with real-world educational contexts and objectives.

Educational
event data

Feature
engineering

Behavioral
features

Objective
definition Objectives

Model
construction

Predictive
models

Generation Actionable
recommendations

Campus
Management
System
(CMS)

Figure 1: Overview of the approach.

4.1 Objective Definition

The objectives of our recommendations are defined by establishing metrics that en-
compass various dimensions of academic performance. These metrics are divided into
two categories: those pertaining to overall study progress and achievements, and those
focused on performance in individual courses.

4.1.1 Study-Level Performance Metrics

For evaluating performance at the study level, we consider the following metrics:

• Overall GPA: The cumulative Grade Point Average (GPA) serves as a compre-
hensive indicator of a student’s academic performance across all courses undertaken
during their complete study. For example, in the grading system considered in our
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work, a lower overall GPA is reflective of consistent academic excellence, with 1.0
being the highest (best) grade and 5.0 indicating failure.

• GPA up to N-th Semester (GPA-N): This metric calculates the cumulative
GPA of a student up to the N-th semester, providing a snapshot of academic
performance in varying stages of the degree program.

• Time-to-Degree: This metric measures the duration taken by a student to com-
plete their degree program, from enrollment to graduation. Shorter times-to-degree
are generally indicative of efficient academic progression, whereas longer durations
may signal potential challenges or changes in academic direction.

• Dropout: This metric assesses whether a student discontinues their studies before
completing the degree requirements.

4.1.2 Course-Level Performance Metrics

For the performance evaluation at the individual course level, we consider the following
metrics:

• Course Grade: The grade achieved in a particular course, which directly reflects
a student’s understanding of the subject matter.

• Course Repeat: The number of course attempts by the student. This metric can
highlight issues such as course withdrawals or failures.

By defining these metrics, we establish a clear set of objectives for our recommen-
dations to enhance both broad and specific aspects of student academic performance.
These objectives guide the development and evaluation of our predictive models
and the recommendations derived from them, ensuring that they are aligned with
meaningful academic outcomes.

4.2 Feature Engineering

Following the framework suggested by de Leoni et al. [9], we categorize behavioral
features into various perspectives, such as control-flow, data, and time perspectives,
to characterize the educational event data comprehensively. Although the resource
perspective is less applicable in our context, the other dimensions provide a foundation
for analyzing student academic pathways and performance.

4.2.1 Control-Flow Perspectives

Control-flow features reflect the academic progression of students by capturing the
sequence and occurrence of course enrollments:

• Occurrences (occur): The number of times a student is enrolled in a particular
course. For instance, student S001 has enrolled in course C101 two times, i.e.,
occur(C101) = 2.

• First Occurrence of a Course (first): The first semester a student is enrolled in a
course. Student S001’s first enrollment in course C101 was in the first semester for
the student (Fall 2023), i.e., first(C101) = 1.
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• Last Occurrence of a Course (last): The most recent semester a student is enrolled
in a course. Student S001’s last enrollment in course C101 was in the third semester
for the student (Fall 2024), i.e., last(C101) = 3.

• Directly-Follows (DF ): A sequence where a student enrolls in one course in a
semester and another course in the immediately following semester. For example,
student S001 took course C101 in Fall 2023 and then took course C102 in Spring
2024, i.e., DF (C101, C102) = True.

• Eventually-Follows (EF ): A sequence where a student takes one course and then
another course in any subsequent semester. For example, student S001 took course
C101 in Fall 2023 and then took course C104 in Fall 2024, with another semester
in between, i.e., EF (C101, C104) = True.

4.2.2 Data Perspectives

Data features concentrate on event-related attributes such as grades and credits:

• Total Credits (total credits): Sum of all credits accumulated by a student throughout
their academic journey. For S001, this would be 4 (from C101 in Fall 2023) + 3
(from C102 in Spring 2024) + 4 (from C101 in Fall 2024) + 3 (from C104 in Fall
2024) = 14 credits, i.e., total credits = 14.

• Total Credits in a Semester (total credits semester): The total number of cred-
its a student accumulates in a single semester. For S001’s third semester in Fall
2024, the cumulative credits are 4 (from C101) + 3 (from C104) = 7 credits, i.e.,
(total credits 3 = 7).

• Average Grade (avg grade): The average grade across all courses for a student. For
S001, the average grade is (2.0 + 1.5 + 1.7 + 1.3) / 4 = 1.625, i.e., avg grade = 1.625.

• Latest Recorded Course Grade (course grade): The most recent grade received for
each course. For S001, the latest recorded grade for C101 is 1.7 in Fall 2024, i.e.,
course grade(C101) = 1.7.

4.2.3 Time Perspectives

Time features capture the temporal aspects of academic activities:

• Study Duration (study duration): The total number of semesters a student has been
enrolled. S001 has been enrolled for 3 semesters, i.e., study duration = 3.

• Course Duration (course duration): The number of semesters it takes for a student
to complete a course. For S001, if we assume that C101 required two attempts, then
the course duration for C101 is 2 semesters, i.e., course duration(C101) = 2.

• Duration between Two Courses (duration between): The number of semesters
between a student’s enrollments in two courses. For S001, the duration
between C101 (Fall 2023) and C102 (Spring 2024) is 1 semester, i.e.,
duration between(C101, C102) = 1.

By integrating these diverse perspectives, we develop a comprehensive feature set
that encapsulates the nature of student academic behaviors. Note that the overlap in
metrics across different perspectives is by design. Each perspective serves a unique an-
alytical purpose despite superficial overlaps. For example, Last Occurrence of a Course
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in the control-flow perspective helps in pinpointing the specific timing within the
student’s academic trajectory, which differs from Course Repeat, which indicates the
student’s progression in the course. Similarly, while Directly-Follows and Eventually-
Follows might seem to duplicate the sequence information, they provide distinct
insights; the former captures immediate sequential dependencies, whereas the latter
encompasses long-term course progressions. This differentiation aids in constructing a
more detailed and comprehensive predictive model. Furthermore, by employing tech-
niques such as Lasso regularization within the RuleFit algorithm, we manage the
potential for redundancy and ensure that each feature contributes uniquely to the
predictive accuracy.

4.3 Recommendation Distillation

Next, we distill recommendations from educational event data in two steps. First,
we construct a predictive model to correlate behavioral features extracted from the
educational event data to an objective. Second, we generate recommendations by ana-
lyzing the model’s output, emphasizing the importance and coefficients of features and
rules to identify key influencers of academic success. Subsequently, we interpret these
statistical insights into practical strategies, aiming to enhance student outcomes by
contextualizing the data-driven findings into actionable educational recommendations.

4.3.1 Model Construction

Using the objectives defined in Subsection 4.1 and the behavioral features outlined in
Subsection 4.2, we employ the RuleFit algorithm to train an ensemble of trees. The
RuleFit algorithm is particularly suited for this task due to its ability to generate
interpretable models that combine the predictive power of decision trees with the
simplicity of linear models. This hybrid approach allows for extracting actionable rules
from complex educational data, capturing both linear relationships and decision-based
patterns.

The selection of features depends on the chosen objectives. For an objective like
overall GPA, we can incorporate features that are predictive yet independent of the
GPA itself to avert data leakage. These features include First Occurrence of Course X,
Last Occurrence of Course X, Directly-Follows, and Cumulative Credits in a Semester.
Conversely, we consciously omit features closely tied to the GPA, such as Average
Grade or Latest Recorded Grade.

4.3.2 Recommendation Generation

The resulting RuleFit model provides two key metrics for each feature and rule: the
importance and the coefficient. We start by assessing the importance measure, which
reflects the relative contribution of each feature or rule to the model’s predictive ac-
curacy. Features and rules with higher importance scores are considered more critical
for prediction. This allows us to pinpoint the most influential elements that signifi-
cantly affect student outcomes. As depicted in Table 2, we give precedence to rules
with higher importance scores, as they are more impactful in the model.
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Rule Importance Coefficient

total credits 1 ≤ 15 0.90 -0.15
first(C101) = 1 0.80 -0.18
last(C103) = 4 & DF (C102, C103) 0.70 0.20

Table 2: Top rules derived from the RuleFit model for predicting overall GPA

Subsequently, we analyze the coefficients to understand the nature and extent of
each rule’s impact. In a grading system where a lower GPA is indicative of better
performance, a negative coefficient is desirable as it suggests that adherence to the rule
is associated with an improvement in overall GPA. The magnitude of these coefficients
provides insight into the strength of the influence that each feature or rule has on
academic performance. For instance, the first rule in Table 2 regarding the limit on
total credits in the first semester has a negative coefficient of -0.15, implying that
students who take a moderate number of credits are likely to achieve better GPAs.
In contrast, the third rule, as seen in Table 2, carries a positive coefficient of 0.20.
This suggests that the last occurrence of C103 in the fourth semester, coupled with it
directly following C102, is related to a higher (worse) GPA.

Finally, through contextual interpretation, we derive actionable recommendations
to improve student performance. For instance, based on the first rule in Table 2,
we recommend study program designers balance students’ course loads, e.g., to the
maximum of 15 credits, particularly in the initial semester, to enhance their academic
outcomes. Additionally, according to the third rule, we recommend program designers
carefully consider the order in which C103 and C102 are taken, especially if C103 is
planned for the fourth semester.

5 Dataset Description and Scoping

This section introduces the event data used for evaluating our proposed approach.
The event data are extracted from the CMS of RWTH Aachen University and are
filtered for exam attempts by computer science bachelor students at RWTH Aachen
University. Only students enrolled in the 2018 exam regulation for computer science
bachelor’s are included in the dataset. When the 2018 exam regulation was introduced,
students from earlier semesters were allowed to change from older exam regulations to
the one of 2018. Therefore, the event data comprises students who started earlier than
2019 but switched to the 2018 exam regulations and students who started from 2019
onwards. This ensures consistency in the features used for our predictive model, as all
students’ data reflect the revised course credit points and available course selections
under the 2018 regulations.

In total, 78,529 exam attempts of 3,190 students from September 2000 to Januar
2023 are contained in the dataset. The event data follow the format described in
Subsection 3.1. The student IDs are anonymized. Nearly every study path is unique,
with an average number of 24.6 exam attempts per student which counts for an average
of 110.8 credits points that students enrolled for. In total, there are 3,051 unique study
path variants.
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student cohort 2

student cohort 3

student cohort 4

student cohort 5

student cohort 6

student cohort 7

Figure 2: Dotted chart showing exam attempt events of computer science bachelor
students from 2016 to 2023. Each row represents a student order by their first exam
date. The dotted chart was created using ProM 6.13. The exam attempts are colored
by their term.

By assuming the exam date as the timestamp and the student identifier as the
case identifier, we get the dotted chart shown in Figure 2. For better readability, the
dotted chart in Figure 2 shows only exams from 2016 to 2023. In the chart, each
dot represents an event (exam attempt). The dots are aligned horizontally according
to the timestamp (exam date) and vertically according to the case (student). Dots
on a horizontal line represent a case, i.e., the exam-taking history of a student. The
students on the vertical axis are ordered by their first exam date. The color of the dots
is defined by the semester the exam belongs to. In the dotted chart, one can see the
two exam periods per year. Also, one can see student cohorts of students that start
together in the winter semester. For example, student cohort 3 is the class of students
that enrolled in the university in 2017 so the first exams they participated in were
the exams in the winter semester of 2017 which were written in January 2018. Each
cohort of students that enrolled in the same year can be identified in the dotted chart
by the semester they participated in their first exams. For each cohort, the number
of exam attempts per semester decreases ofer time after their university start because
students are dropping out or graduating, especially after six semesters, which is the
planned study length. However, for example, for the first cohort, there are still some
exam attempts in their 14th semester in September 2022.

There are 1,541 unique courses, but most of them appear very infrequent. For 1,298
courses, less than 20 exam attempts are recorded. The frequency of the 243 courses that
appear more than 20 times in the event data are shown in Figure 3. The distribution
shows that some courses appear frequently, and most other courses are infrequent.
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The average number of attempts over all courses is 1.02 which indicates that most
students are able to finish most courses on the first try. On average, a student needs
to retake 3.8 courses during his studies. Most of the frequent courses are mandatory
courses for the first two semesters. The most frequent course, for example, is the
mandatory second-semester course Linear Algebra for which 3,665 exam attempts are
recorded. The high number of infrequent courses can be explained by students being
able to choose from various elective courses and seminars. Especially the seminars are
often held only once and are designed for a smaller number of students. Based on
these insights, we filtered out infrequent courses that occurred less than 100 times and
considered the remaining 73 courses in our analysis.
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3000

3500
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eq
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nc

y

Frequency of courses that appear at least 20 times

Figure 3: Number of occurrences per course filtered for courses that occur at least
20 times. Resulting in 243 out of 1514 courses.

The grade in an exam is the major performance indicator for a student’s success
in a course. In the German grading system, grades go from 1.0 (excellent) to 4.0
(passed) and 5.0 (failed). Some courses do not assign grades to the students because
they can either be passed or failed. If a course is only pass or fail, the student receives
a grade of 0.0 for passing and a grade of 5.0 for failing. We excluded those courses and
computed the variance of the grade distribution for the remaining courses. The grade
distributions in the form of a boxplot for the ten courses with the highest variance
are shown in Figure 4. Most courses with high variance are also more difficult and
have a mean grade higher than 3.0. In Figure 5, the grade distributions for the ten
courses with the lowest variance are shown in a boxplot. For these courses, the mean
grades are better, with half of the courses having a mean grade below 1.5. Out of the
73 courses, 55 have a grade variance higher than 1. Since the range of grades spans
only from 1.0 to 5.0, the variance of 1.0 can be considered high. This higher variance
implies that these courses pose greater challenges to students, leading to more varied
academic results. Consequently, in our evaluation detailed in Section 6, we specifically
focus on these courses with a variance above 1.0. This allows us to produce targeted
recommendations on what we define as hard courses.
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Figure 4: The grade distribution of the ten courses with the highest variance in their
grades.
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Figure 5: The grade distribution of the ten courses with the lowest variance in their
grades.

6 Evaluation

In this section, we assess the effectiveness of our approach, employing the dataset
described in Section 5. The evaluation is designed to achieve two primary objectives:

• First, to evaluate the effectiveness of our approach in modeling the relationship
between behavioral features and target academic outcomes.
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• Second, to determine the practical utility of these models in formulating actionable
recommendations that can tangibly enhance academic achievement.

6.1 Evaluating Models

We initiate our evaluation by analyzing the predictive accuracy of the models derived
from our approach. For comparison, we adopt decision trees, as introduced in [8], as
our baseline model. Note that the selection of the baseline model is carefully aligned
with our objectives to ensure not only robust prediction but also high interpretability
and direct applicability of the results. We acknowledge that while other models like
logistic regression and random forests are valuable in predictive analytics, they do
not meet the crucial criterion of generating interpretable, actionable rules required for
direct application in educational program design.

We train each model to predict the GPA up to N-th semester (cf. Subsection 4.1).
To circumvent data leakage and ensure fairness in model assessment, we exclude any
features directly tied to GPA, focusing instead on the other informative features out-
lined in Subsection 4.2. We use features such as occurrences, first occurrences of a
course, last occurrence of a course, total credits, total credits in a semester, study
duration, and course duration.

We segment the event data detailed in Section 5 into five distinct datasets corre-
sponding to different academic stages. For instance, Data-S2 encompasses events for
students concluding their second semester and embarking on their third. Each dataset
is used to train models to predict the GPA up to N-th semester. For example, we
use Data-S2 to train a model to predict the GPA up to 2nd semester. This segmen-
tation enables an assessment of model performance across varying academic phases,
enriching our understanding of the models’ predictive capabilities at different points
in a student’s academic journey. The distribution of overall GPA within each dataset,
illustrated in Figure 6, offers insights into the academic progression captured in our
data.

To ensure the reliability and generalizability of our results, we employ a 5-fold cross-
validation technique. This method divides each dataset into five subsets, ensuring a
comprehensive and robust evaluation by iteratively training and validating the models
on diverse data splits, thereby mitigating the risk of overfitting.

Model performance is evaluated using Mean Squared Error (MSE), which calcu-
lates the average of the squares of the errors between actual and predicted GPAs.
Figure 7 illustrates the comparative performance of our method against a baseline
model, highlighting the accuracy of GPA predictions through cross-validation folds.
Notably, our approach consistently outperforms the baseline, evidencing its superior
predictive capability.

Particularly in Data-S3, where a decision tree model’s MSE exceeded 2, our ap-
proach demonstrated remarkable robustness. Nonetheless, there is a notable variance
in model performance in Data-S2 and Data-S5. The second semester’s data likely
lack sufficient behavioral indicators, as students’ patterns are not yet well-established.
In the fifth semester, the smaller student cohort might limit the model’s ability to
generalize effectively, potentially impacting its performance.
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Figure 6: Distribution of overall GPA within each dataset, illustrating academic
progression.

6.2 Effectiveness of Recommendation Generation

Beyond predictive accuracy, the utility of our approach extends to its capability to
generate meaningful recommendations to enhance student success. This subsection
assesses the recommendation quality, focusing on the interpretability and applicability
of the generated recommendations.

Before generating recommendations, we report the number of rules generated per
semester, for each of which we can generate a recommendation, in Figure 8. The
chart highlights the fluctuation in rule quantity and, subsequently, recommendation
quantity across different academic periods. Notably, the fifth semester stands out
with the highest rule count at 143, while the third semester presents the minimum
at 65 rules, highlighting that the students in the fifth semester show more distinctive
patterns that lead to higher GPA. The chart further distinguishes between positive
rules, which, if adhered to, could boost academic performance, and negative rules,
avoidance of which might similarly result in performance gains. This differentiation
reveals diverse trends across semesters, with a general inclination towards generating
more positive than negative rules in most semesters. An exception is observed in the
fifth semester, where the number of negative rules surpasses the positive ones.

Next, by interpreting the extracted rules, we derive actionable recommendations.
Table 3 showcases the top 10 rules extracted from the predictive model targeting the
overall GPA prediction for students in their fourth semester. The rules are initially
prioritized by their importance measures. Subsequently, the rules are evaluated based
on their coefficients, which indicate the direction and magnitude of their impact on
GPA. For instance, the first rule, “last(SAP) ≤ 2.5 & total credits > 77.0”, suggests a
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Figure 7: Comparison of predictive performance between the proposed approach and
decision tree baseline, measured in terms of Mean Squared Error (MSE) across 5-fold
cross-validation.

significant enhancement in GPA (considering our system where a lower GPA is more
favorable) when students complete SAP before their third semester and accumulate a
total credits higher than 77.

Rules Importance Coefficient

last(SAP) ≤ 2.5 & total credits > 77.0 0.0898 -0.1799
last(DA) ≤ 4.5 & last(AI) ≤ 0.5 & course duration(SAP) ≤ 1 0.0805 -0.176
last(SAP) ≤ 8.0 & last(OR) ≤ 0.5 & last(Wt) ≤ 0.5 & total courses ≤
16.5

0.067 -0.1363

total credits ≤ 90.5 0.063 0.1371
course duration(BS) ≤ 1 & total credits > 7 & total courses ≤ 15.5 0.0622 -0.1276
total credits ≤ 39 & last(St) ≤ 5 0.0609 0.1531
first(DS) ≤ 1.5 & total courses > 15.5 & course duration(SAP) ≤ 1 &
total credits > 41.5 & last(SAP) > 0.5

0.0586 -0.1573

total course > 15.5 & total credits ≤ 100.5 & total credits > 93.5 0.0584 0.2521
first(EW) ≤ 1 & last(KSP) ≤ 1 & total credits > 96.5 0.0541 -0.136
total credits > 61.5 & course duration(ETI) ≤ 1 & total credits ≤
96.5 & course duration(BS) ≤ 1 & total courses ≤ 14.5

0.0529 -0.1229

Table 3: Top 10 rules extracted from the predictive model for fourth-semester GPA
prediction

By interpreting these rules within the educational context, we can provide targeted
recommendations to course designers, such as focusing on completing SAP in the first
half of the study and managing students’ course load to less than 77 credits.

Furthermore, Table 4 shows the top 10 rules obtained from the predictive model
targeting the overall GPA for students in their fifth semester. For instance, the rule
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Figure 8: The number of rules extracted from predictive models for different target
semesters.

“first(ST) ≤ 4.5 & last(NA) ≤ 1.0 & last(Comp) ≤ 1.5” with a coefficient of 0.4392
indicates that enrolling in ST (mandatory course) later in the academic journey while
enrolling in “NA” and “Comp” (electives) early on is associated with an unfavorable
increase in GPA.

Rules Importance Coefficient

first(ST) ≤ 4.5 & last(NA) ≤ 1.0 & last(Comp) ≤ 1.5 0.2131 0.4392
course duration(LA) ≤ 1.0 & course duration(OR) ≤ 1.0 &
course duration(Prog) ≤ 1.0 & course duration(TI) ≤ 1.0 & to-
tal courses ≤ 17.5

0.1405 -0.2853

first(BWL) ≤ 0.5 0.1278 0.3922
last(DuS) ≤ 6 & course duration(BS) ≤ 3 & total credits ≤ 99 &
first(LA) ≤ 6 & last(DS) ≤ 0.5 & total courses ≤ 17

0.1132 -0.2298

last(ETI) ≤ 0.5 & last(BS) ≤ 0.5 & last(EaS) ≤ 2.5 0.111 -0.4382
total credits ≤ 101.5 & last(LA) ≤ 1.5 0.1103 0.2227
total credits > 32.5 & last(MIT) ≤ 0.5 & first(Sp) > 2.5 0.1099 0.2375
total courses > 11.5 & first(Sp) ≤ 0.5 0.1094 0.3022
total credits > 17.5 & last(Mg) ≤ 1 & first(IAI) ≤ 2.5 & last(AI) ≤ 1.5 0.1041 -0.2083
total credits > 46 & first(Cp) ≤ 1.5 & course duration(SAP) ≤ 1 &
last(DaS) ≤ 6.5 & total credits ≤ 107.5

0.095 -0.191

Table 4: Top 10 rules extracted from the predictive model for fifth-semester GPA
prediction
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Conversely, the rule with a negative coefficient, “course duration(LA) ≤ 1.0 &
course duration(OR) ≤ 1.0 & course duration(Prog) ≤ 1.0 & course duration(TI) ≤
1.0 & total courses ≤ 17.5”, suggests that timely completion of these foundational
courses, alongside managing a moderate total course load, positively impacts the GPA.

Using these insights, we can develop targeted recommendations for study program
designers. The emphasis could be on advising the optimal sequencing of courses and
highlighting the importance of foundational subjects like ST in the early semesters. In
addition, recommendations might focus on strategic planning of students’ academic
trajectory, ensuring that critical courses, such as LA, OR, Prog, and TI, are not only
selected but also completed in a timely manner to leverage their positive impact on
GPA.

While our model inherently reflects the structured progression pathways mandated
by existing academic regulations, it also allows for the exploration of atypical yet suc-
cessful academic behaviors, e.g., last(EaS) ≤ 2.5 although the course is recommended
for the fourth semester. This capability can highlight opportunities for program de-
signers to re-evaluate their course sequencing and prerequisite structures. Such insights
are particularly valuable in evolving academic environments where flexibility can
significantly enhance student outcomes.

7 Conclusion

In this paper, we introduced a novel approach for generating actionable recommenda-
tions from educational event data, specifically those collected by CMS. Our approach,
structured in three distinct phases, leverages this data to uncover insights into stu-
dents’ academic behaviors and their implications on key educational outcomes. First,
we identified essential features related to students’ academic performance, examining
aspects such as grade trends, course sequencing, and exam attempt patterns. To that
end, we adapted the features suggested by de Leoni et al. [9] to suit the educational
context, ensuring their relevance. The core of our approach is the deployment of the
RuleFit algorithm to train a predictive model capable of forecasting crucial educa-
tional outcomes like GPAs. This model not only serves as a predictive tool but also as
a means to distill meaningful rules that underpin these forecasts. Finally, we convert
these rules into tangible recommendations for study program designers.

Our approach was evaluated using a dataset from the computer science bachelor’s
program at RWTH Aachen University. By extracting features for a cohort of students,
developing a model to predict their overall GPA, and subsequently deriving recom-
mendations that lead to higher GPAs, we showcased the potential of our approach to
inform and enhance educational practices.

Our proposed approach still has several limitations. First, the approach is evalu-
ated in a specific program at RWTH Aachen University. This raises questions about
the method’s applicability to other disciplines, educational levels, or institutions with
different academic structures and cultures. The uniqueness of each educational setting
and student demographics may require adjustments in the proposed approach. Second,
educational practices, course content, and program requirements evolve over time. This
dynamic nature of the educational environment could render the recommendations
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derived from historical data less applicable or even obsolete, necessitating continual
model updates and recalibrations to align with current educational practices. Third,
the model primarily focuses on observable academic behaviors and course-related data,
potentially overlooking the personal and socio-economic factors that influence student
performance. Factors such as personal motivation and varying learning styles can sig-
nificantly impact academic outcomes but are often not captured in CMS event data.
Fourth, the lack of a structured mechanism for feedback in the model’s development
limits the opportunity for continuous improvement and adaptation to users’ needs.
Engaging students and educators in providing feedback on the utility, accuracy, and
impact of the recommendations could provide insights into the model’s real-world effec-
tiveness. Finally, while our approach does not incorporate instructor-specific features
due to the complexities of privacy and data protection, we recognize the potential in-
sights such data could provide. Future research could explore the impact of varying
instructional methods on student outcomes.
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